A User Oriented OWL Development Environment
Designed to Implement Common Patterns & Minimise
Common Errors

Matthew Horridge', Alan Rector', Nick Drummond', Holger Knublauch?, Hai Wang'

'Department of Computer Science, University of Manchester, Manchester M13 9PL, UK
matthew.horridge@cs.man.ac.uk
rector@cs.man.ac.uk
“Stanford Medical Informatics, Stanford University, USA

Abstract: The Protégé-OWL environment including visualization, debugging,
and wizard tools from the CO-ODE programme provides a user oriented
environment for developing OWL ontologies. The long-term goal is to help
subject matter experts to build and manage their own ontologies. The
environment has been designed based on experience in teaching OWL and its
precursor languages and on the experience of “ontology patterns” being collated
by the Semantic Web Best Practice group. Protégé’s plug-and-play architecture
is designed to support multiple interfaces — some aimed at neophyte, others at
logicians and teaching, others at large scale development — and a range of tools
for visualization, debugging, and implementing common patterns. It also
provides a smooth transition from frames to OWL. The demonstration will
cover a variety of development scenarios. All tools are public domain and
available from http://protégé.stanford.edu and http://www.co-ode.edu where a
comprehensive tutorial based on the tools can also be found. The project is still
evolving and interested users are invited to join the forum and contribute
requirements, ideas, and/or additional plugin modules.

1. Introduction

The Protégé-OWL and CO-ODE projects assume that different user interfaces will be
required for different users and different types of ontologies. It also assumes that
users want to work at the level of patterns and principles rather than at the level of the
detailed logical constructs embodied in the OWL language itself. A key source of
design ideas has been experience of common errors garnered from experience in
giving courses and tutorials in OWL[4]
The guiding principles are to:
* Make the easy thing the right thing — to make the defaults the usual case.
* Make it easy to do the right thing — to provide short cuts for common tasks.
* Ensure that complex tasks are fully and correctly completed — to provide wizards
to guide users through complex tasks to the end.
* Make it easy to see what has been done — to provide visualization and debugging
aids.

An important side effect of automating common tasks has been that it has reduced
the time required to produce standard example ontologies by a factor of four or more.

2. The “Logician’s Interface’’: combining definitions and axioms

The primary interface tested to date is the “Logician’s” or “Students’” interface. It

provides access to the full features of OWL, but in a more convenient format than

previous editors such as OilEd [1]. A major goal has been to get as much information

together on a single screen as possible. Hence, class definitions and axioms have

been combined by giving each class a subpane for “necessary and sufficient

conditions” (the definition) and “necessary conditions” simple subsumptions.
A number of simple common operations are integrated into the classes tab - a

major pane of the interface, including: (See fig 1)

* Making all sibling classes disjoint .

¢ Converting classes from primitive to defined and vice versa (i.e. from “partial” to
“complete” definitions).

* Moving individual restrictions from “necessary and sufficient” to “necessary”
subpanes, either by drag-and-drop and cut-and-paste methods.

* “Cloning” classes to enable easy “copy and edit” style development of similar
classes.

* Generating “closure axioms” for any property with a single operation — i.e.
generating a universal restriction whose filler is the disjunction of all of the fillers
of the existential restrictions for the same property.

ASSERTED COHDITIONS: ASSERTED COHDITIONS:

CIE CIENT
sery | (C) Pizza
C) Pizza = 2)~(3 has_topping Fish) =
‘.Yi‘*v’ has_topping (Mozzarella u Tomato) c .2)(3 has_topping Meat)
.3 3 has_topping Tomato [= NECESSARY
.3 3 has_topping Mozzarella =
ASSERTED CONDITIONS: O @ 2 & X (31)) DISJOINTS: W 40 §° 2 &M
NECESSARY & SUFFICIENT | KC)Meat
C) PizzaTopping % .C) Cheese
'3 3 has_spicyness Hot % C) Fruit
\C)Vegetahle
) =(3 is_suitable_for Small_Child)

Figure 1: Some widgets from the classes tab: Conditions widget showing a
primitive (partially defined) class “Margherita pizza” with a closure axiom, a
completely defined class, and a completely class with an additional necessary
restriction (axiom). Restrictions can be moved easily between subpanes. The
Disjoints widget showing an entire set of disjoints, which are settable with a
single click.

3. Wizards and automating process

Just as in programming, ontology development is often best thought of in terms of
“design patterns”. The CO-ODE extensions provide a plugable wizard architecture to
implement common patterns. This work is closely following the work of the
Semantic Web Best Practices and Deployment working group.

The Wizard architecture is itself plugable to encourage others to create wizards to
automate common patterns. Important wizards to date include:

* Create a list of disjoint sibling classes — soon to be extended to creating disjoint
trees.

* Create “value partitions” — i.e. a property, a class representing a “Quality” (“Value
type”) and a set of subclasses exhaustively partitioning the Quality to act as
“values” [5].

¢ Creating enumerated classes (nominals).

¢ Using a form to enter the values for existential restrictions on a set of properties
for a group of classes — the “Property matrix” wizard (See fig 2).

* Representing relations as values.

A range of further wizards are planned including tools for “normalisation”[3]

(“untangling”) and for transforming existing classes or generating new classes from

existing classes according to an example pattern.

é Properties Matrix 1'

click Class | hasSpicines | hasFatContent |
here Cheese L Bland
far Mozzarella |C Lows_fat
rmare Parmesan \C) High_fat
help Fish
Anchovies |CJ Lowe_fat
Steps Tuna
Mushroom
Choose Classes Pepper @ Hot
Choose Properties
Set Properties
Finishl

Figure 2: Fragment of “Property Matrix Wizard” allowing existential
restrictions for several properties to be added quickly to a set of classes.

4. Visualisation Explanation and Debugging

Understanding the detailed meaning of OWL and locating classification errors in even
moderately large ontologies is notoriously difficult. Since any subclass of an
unsatisfiable class is unsatisfiable, and any existential restriction filled by an
unsatisfiable class is unsatisfiable, errors propagate.

The CO-ODE extensions to Protégé OWL provide two types of help:

¢ Simultaneous display of asserted and inferred hierarchies and list of changes made
by the reasoner to the classification.
* A comprehensive graphical visualization tool.
¢ Paraphrase pop ups to make class descriptions clearer.
* Debugging aids that highlight the cause of a class being unsatisfiable.
¢ Comparison and ontology evolution aids — the PROMPT tool [2]
* A scripting interface to Python to facilitate one off tasks and ontology migration.
. ;TE%%LL PineappleTopping

TomatoTopping

MusnroomTopping

PopparTopping

/ s -
/ P PepperoniTopping
/ sa—

o
58— Weatfopping <158 Sasamitopping
<

e e

SpeyToppng),

Figure 3 OWLViz visualization tool

5. Architecture, Requirements & availability

The projects are collaborating to use Protégé’s plug-and-play architecture to make it
easy to create multiple interfaces, wizards, debugging aids, explanation aids based. It
provides dynamic mapping between Protégé’s frame and slot model based on OKBS
and OWL’s model of class, restrictions and axioms.

All software is written in Java and available for Windows, Mac and Linux.

All software is open source and can be obtained, along with further details,
tutorials, and examples from http://protégé.stanford.edu and http://www.co-ode.org.

Contacts: Alan Rector or Matthew Horridge: {rector | horridge} @cs.man.ac.uk

References

1. Bechhofer, S., Horrocks, 1., Goble, C. and Stevens, R., OilEd: a Reason-able Ontology Editor for the
Semantic Web. in KI2001, Joint German/Austrian conference on Artificial Intelligence, (Vienna, 2001),
Springer-Verlag, 396--408.

2. Noy, N.F. and Musen, M.A., PROMPT: Algorithm and Tool for Automated Ontology Merging and
Alignment. in Seventeenth National Conference Artificial Intelligence (AAAI), (Austin Texas, 2000).

3. Rector, A., Modularisation of Domain Ontologies Implemented in Description Logics and related
formalisms including OWL. in Knowledge Capture 2003, (Sanibel Island, FL, 2003), ACM, 121-128.

4. Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens, R., Wang, H. and Wroe,
C., OWL Pizzas: Common errors & common patterns from practical experience of teaching OWL-DL.
in European Knowledge Acquisition Workshop (EKAW-2004), (2004), (in press).

5. Rector, A (ed). Representing Specified Values in OWL: "value partitions" and "value sets", W3C
Editor's Draft, 2004 ,http://www.w3.org/TR/swbp-specified-values/

