
CODE: A Development Environment for OWL-S
Web services

Naveen Srinivasan1, Massimo Paolucci1, and Katia Sycara1

1 The Robotics Institute, Carnegie Mellon University,
 Pittsburgh, PA 15213, USA

{naveen, paolucci, Katia}@cs.cmu.edu

Abstract. The generation of Semantic Web services is a complex and error
prone process. CODE, the system that we intend to demo, is an Integrated De-
velopment Environment that supports the developer through the whole process
from the Java generation, to the compilation of OWL-S descriptions to the de-
ployment and registration with UDDI.

1 Introduction

To implement an OWL-S Web service, a Web Services developer engages in many
different activities: first she implements the Web service; second, she provides the
WSDL description, third she compiles the OWL-S description of the Web Service.
The latter step requires the compilation of a Process Model that is faithful to the actual
Web service implementation, a Profile for discovery and a Grounding that maps the
Process Model to WSDL. This process is very time consuming and error prone, and
the few tools that are available to support the developer do not form a consistent suite,
therefore, they are very difficult to use on a consistent basis.

CODE (CMU’s OWL-S Development Environment) addresses the problems of the

developer by providing a uniform integrated development environment. CODE sup-

ports the developer from the Java development to the generation of the OWL-S de-

scriptions, to the deployment and registration of the Web service with UDDI. Fur-

thermore, through its editing facilities, CODE guarantees the syntactic correctness of

the service description, and it allows the developer to use the SPIN model checker
11
 to

verify correctness claims about the control flow of the OWL-S Process Model. As a

result CODE helps the developer to detect problems at development and compilation

time, reducing the likelihood of execution time errors.

The guiding principle of the design of CODE is to integrate the tools that the devel-

oper needs during the implementation, description and deployment of Semantic Web

services, in a single consistent and extensible environment. The consistency of the

development tools allows the developer to move seamlessly between the different

aspects of Semantic Web services development, while the extensibility of the envi-

ronment allows other parties to provide additional contributions.

2 Walkthrough of the demo

During the demo we will show how CODE supports the developers in the complete
development lifecycle of both real Web services such as the one provided by the Ama-

zon Bookstore1 as well as fictitious Web
services such as the BravoAir example
provided by the OWL-S coalition. Spe-
cifically, we will use CODE to generate
the OWL-S descriptions of those Web
services starting from a Java interface or
the WSDL specification. In the process,
we will use those specifications to deploy
the service, advertise with an OWL-S
based UDDI2 as well as to generate clients
that can interact with the Web service.

Figure 1 shows the life cycle of Web
service development. The boxes in the
figure represent activities that the devel-
oper needs to perform and/or tools that
are available to partially automate such
activities; while the scrolls represent code
or data that the developer needs to gener-

ate, possibly with the assistance of the tools.

2.1 Generation of WSDL and OWL-S
The first activity of the developer is the generation the Java3 code that implements

the Web service. This is supported by the eclipse IDE4. Once the code is generated,
the developer generates the WSDL description of the Web service with the support of
Apache’s Java2WSDL5 and the OWL-S description with the support of WSDL2OWL-
S6. The results of this process are a complete WSDL, OWL-S Grounding descriptions,

and a skeletal OWL-S Process Model and Profile. While WSDL2OWL-S greatly

facilitates the developer activities, many aspects of the description are left to be com-

plited. Specifically, the developer needs to add control flow and data flow informa-

tion as well as to complete the Profile non-functional parameters.

1 http://www.amazon.com/gp/aws/sdk/
2 http://www.daml.ri.cmu.edu/matchmaker
3 In principle the developer may use any other language, but we indicate Java here because

eclipse, on which CODE is based, is mainly a Java IDE.
4 www.eclipse.org
5 http://ws.apache.org/axis/
6 http://www.daml.ri.cmu.edu/wsdl2owls

Figure 1: the Web services life cycle

2.2 Editing of OWL-S
The schematic OWL-S generated by the WSDL2OWL-S tool can be completed us-

ing the OWL-S editor. CODE provides two forms of editing for OWL-S ontologies,
the first one is form based, as shown in Figure 2 and Figure 3, the other is text based
by allowing the developer to edit directly the OWL-S source.

 The frame-based editor provides guidance to the developer on what information
should be added at each stage of the compilation of the OWL-S description. For in-
stance, in the compilation of a process, it requires the developer to enter the inputs,
outputs, preconditions and effects. In turn, each one of them is a form that requires
the developer to enter the appropriate information. If the information entered is not
correct the developer is flagged an error that she can immediately fix.

 The text based editor is an extension of SWeDE7, an eclipse-based OWL editor
that can be used by more experienced developers to generate their OWL-S code more
expeditiously as well as to generate ontologies that are used to describe concepts that
are specific of the Web service.

The editing functions are based on
the CMU OWL-S API that parses
OWL-S definitions into Java objects
extending the Jena OWL API8.

2.2.1 Profile Editor
 The Profile editor, shown in

Figure 2, supports the developer in
the following two tasks: the first one
is the editing of the Service Profile of
the Web service; the second one is
the registration with an UDDI server.

The main pane of the window
shown in Figure 2 displays the form-

based editor that is used to compile the OWL-S Profile. Each field in the form corre-
sponds to one attribute of the OWL-S Profile such as contact information, service
category, input and output, etc. The buttons on the side of each field provide controls
for adding, deleting and modifying various attributes of the OWL-S Profile.

The two smaller panes on the left side provide easy navigation functions that facili-
tate the operations of the developer. The top pane supports the file system navigation,
while the bottom pane provides quick navigation within the OWL-S Profile by giving
direct access to each input, output, category or the different aspects of the contact
information.

7 http://owl-eclipse.projects.semwebcentral.org/
8 http://www.hpl.hp.com/semweb/jena.htm

Figure 2: Profile Editor

 2.2.2 Registration with UDDI
 The Profile Editor also supports the developer through the discovery process by

providing a direct registration and query to an UDDI server as well as the publication
of the Profile on a public Web site. This process, that is supported by the open menu
in Figure 2, provides functions such as Publish Profile. Before sending the Profile,
CODE translates it in a UDDI compatible form using OWL-S2UDDI9 and then auto-
matically registers it with an UDDI server, such as the CMU’s OWL-S/UDDI

Matchmaker10.

2.2.3 Process Editor
The Process Editor supports the de-

veloper in the generation of the Proc-

ess Model using the same approach of

the Profile editor. It provides a frame-

based editor to define processes and

their control and data flow, as well as a

quick navigation panels.

In addition, the editor provides veri-

fication and execution functionalities.

The developed Process Model can be

verified using the Spin model

checker11, to eliminate any inconsis-

tencies in the workflow. Likewise, the Process Model can be executed using OWL-S

VM to eliminate any error during actual invocation of the Web service.

3. Conclusion

The description and deployment of a Web service are very complex and time con-

suming processes that are likely to result in errors. CODE, the tool that we hope to

demo, supports the developer during Web service generation, description and deploy-

ment. In the demo, we will show how CODE helps the developer by guiding the Web

service development and preventing or detecting syntactic and semantic errors.

CODE is currently under testing, but it will be available for beta testing by the time

of the conference and it will be distributed through the SemWebCentral12 repository.

9 http://www.daml.ri.cmu.edu/owls2uddi
10 http://www.daml.ri.cmu.edu/matchmaker
11 http://spinroot.com/spin/whatispin.html
12 http://www.semwebcentral.org

Figure 3: The Process Model Editor

